Songbirds exposed to lead-contaminated water show telltale signs about human impacts
In an experimental exposure study, Kendra Sewall, an associate professor of the School of Neuroscience and biological sciences in the College of Science, and a diverse team of scientists and students have found that lead levels like those reported in Flint, Michigan, can interfere with the neural mechanisms of vocal development of songbirds and affect mate attraction.
By examining the effects of lead exposure in songbirds, more information will be known about how lead impacts learning and underlying neural networks in humans, since they share the same critical period of vocal learning.
“We have known for years that animals like the California condor are at risk of death from eating animals killed with lead shot,” said Sewall. “Our study suggests that wild animals exposed to low levels of lead could have reduced reproduction, which is a concern for maintaining healthy wild populations. I’m reminded of a quote from Rachel Carson’s 'Silent Spring,' ‘but man is a part of nature, and his war against nature is inevitably a war against himself.’”
Moving forward, Sewall and the team will study the mechanism by which these low levels of lead can impair learning and indirectly impair the reproductive success of songbirds. Collaborator and Global Change Center affiliate, Chris Thompson, an assistant professor at the School of Neuroscience, will be assisting with studies examining exactly how lead interferes with neural growth and causes neural damage.