New drug application stops spread of brain cancer cells caused by clinical treatment approach
Neuroscience affiliated faculty, Jennifer Munson, an assistant professor in the Department of Biomedical Engineering and Mechanics in the College of Engineering, is leading a research team that may have found a solution to stopping the spread of brain cancer cells.
In an article published on Nov. 19 in Scientific Reports, Chase Cornelison, lead author and a postdoctoral researcher at Virginia Tech, details the use of a drug that Munson’s team found can block the way cancer cells respond to fluid flow. This work is part of a Munson-led five-year research grant project across multiple universities, examining the role of interstitial fluid flow in the spread of glioma cells. Interstitial fluid is the fluid that surrounds cells in the body.
In labs, Cornelison and others on Munson’s team used mice with glioblastoma to test how a particular approach to delivering cancer treatment, called convection enhanced delivery, caused glioma cells to invade the rest of the brain. To block the fluid’s rapid movement and the spread of cancer cells, they tested a drug called AMD3100. The drug, which already has been used in clinics, appeared to be a game changer, Cornelison said.
The majority of this research happened at the University of Virginia, where Munson previously worked before she came to Virginia Tech in 2017.
This finding could lead to stopping glioblastoma from spreading, Cornelison said.
“I am hopeful that since the drug that we used to block flow stimulation is currently used in patients that maybe clinicians, when they do consider using convection enhanced delivery, will combine that with this drug,” he said.